Excited-state dynamics in 6-thioguanosine from the femtosecond to microsecond time scale.
نویسندگان
چکیده
Patients treated with the immunosuppressant and anticancer drugs 6-thioguanine, azathioprine, or mercaptopurine can metabolize and incorporate them in DNA as 6-thioguanosine. The skin of these patients is sensitive to UVA radiation, and long-term treatment can result in extremely high incidence of sunlight-induced skin cancer. In this contribution the photophysics of 6-thioguanosine have been studied in aqueous buffer solution and in acetonitrile after excitation with UVA light to provide mechanistic insights about the origin of its phototoxicity. It is shown that most of the initial excited-state population in the S(2)(ππ*, L(a)) state decays by ultrafast intersystem crossing to the triplet manifold. A triplet quantum yield of 0.8 ± 0.2 is determined in aqueous buffer solution. A minor fraction of the S(2) population bifurcates on an ultrafast time scale to populate the S(1)(n(S)π*) state, which decays back to the ground state in tens of picoseconds. Quantum-chemical calculations that include solvent effects support the experimental results. The high triplet yield of 6-thioguanosine, which we argue can result in photosensitization of molecular oxygen and photooxidative DNA damage, is proposed to explain the high phototoxicity exhibited by these pro-drugs in patients upon sunlight exposure. Finally, the experimental and computational results for 6-thioguanosine are compared with those reported for the DNA/RNA guanine monomers.
منابع مشابه
Ultrafast Photodissociation Dynamics of Nitromethane.
Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of co...
متن کاملExcited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?
6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug's overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In th...
متن کاملPhotoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy.
The excited state dynamics of two generations perylenediimide chromophores substituted in the bay area with dendritic branches bearing triphenylamine units as well as those of the respective reference compounds are investigated. Using single photon timing and multi-pulse femtosecond transient absorption experiments a direct proof of a reversible charge transfer occurring from the peripheral tri...
متن کاملElectron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters
Electron solvation dynamics in photoexcited anion clusters of I-(D2O)n=4-6 and I-(H2O)4-6 were probed by using femtosecond photoelectron spectroscopy (FPES). An ultrafast pump pulse excited the anion to the cluster analog of the charge-transfer-to-solvent state seen for I- in aqueous solution. Evolution of this state was monitored by time-resolved photoelectron spectroscopy using an ultrafast p...
متن کاملTime-resolved dynamics in acetonitrile cluster anions
Excited state dynamics of acetonitrile cluster anions, ðCH3CNÞ n , were investigated using time-resolved photoelectron imaging (TRPEI) for 20 6 n 6 50. The clusters were excited and then photodetached with femtosecond pump and probe pulses at 790 and 395 nm, respectively. Excited state lifetimes varied between 200 and 270 fs over this size range, showing no obvious size trend. Experimental evid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 12 شماره
صفحات -
تاریخ انتشار 2011